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The Propagation of Light
(2/9, 2/14, 2/16)

 We start with reflection and refraction from the perspectives of Scattering Theory.
 Electromagnetic Theory approach provides a more complete description about 

the incident, reflected, and transmitted radiant flux densities (i.e., Ii, Ir, It, 
respectively).
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Due: 2/21/2023 by 11:30am

HW 3
Hecht 4.19, 4.20, 4.22, 4.23, 4.24, 4.27, 4.28, 4.29
Due: 2/16/2023 by 11:30am 



Reflection
When a beam of light strikes an interface of two different transparent media (such as air 

and glass), some light is always scattered backward, and we call this phenomenon 
reflection. 

 Imagine that light is traveling across a large homogeneous block of glass (Fig. 4.12a).
Now, suppose that the block is sheared in half perpendicular to the beam. The two 

segments are then separated, exposing the smooth, flat surfaces depicted in Fig. 4.12b.
Beam-I reflects off the right-hand block, and because light was initially traveling from a

less to a more optically dense medium, this is called external reflection.
Beam-II is reflected at the glass-air interface. The reflection is from a more to a less 

optically dense medium. This process is referred to as internal reflection.
Figure 4.12 (a) A lightbeam propagating 
through a dense homogeneous medium such as 
glass. (b) when the block of glass is cut and 
parted, the light is reflected backward at the two 
new interfaces. Beam-I is externally reflected, 
and beam-II is internally reflected. Ideally, when 
the two pieces are pressed back together, the 
two reflected beams cancel one another.2

Scattering Theory Approach
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 If the two glass regions are made to approach one another increasingly closely, the 
reflected light will diminish until it ultimately vanishes as the two faces merge and 
disappear and the block becomes continuous again. 

 In other words, beam-I cancels beam-II; they must have been 180° out-of-phase. 
Remember this 180° relative phase shift between internally and externally reflected 
light (we will come back to it later on).



A ray is a line drawn in space corresponding to 
the direction of flow of radiant energy. It is a 
mathematical construct and not a physical entity.

A ray representation is shown in Fig. 4.21 
wherein all the angles are measured from the 
perpendicular (surface normal). 

The incident, reflected, and refracted rays all lie 
in the plane-of-incidence. 

 In other words, the respective unit propagation 
vectors �𝑘𝑘i, �𝑘𝑘r, and �𝑘𝑘t  are coplanar.

Fig. 4.21 The incident, reflected, 
and transmitted beams each lie in 
the plane-of-incidence. 4

Snell’s Law

Note: n is the index of refraction.

Snell’s Law



Example 4.1  A ray of light in air having a specific frequency is incident on a sheet of 
glass. The glass has an index of refraction at that frequency of 1.52. If the transmitted 
ray makes an angle of 19.2° with the normal, find the angle at which the light impinges 
on the interface. 
Solution
From Snell’s Law
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 The ray entering a higher-index medium bends toward the normal (Fig. 4.23a). The 
reverse is also true (Fig. 4.23b); that is, on entering a medium having a lower index, 
the ray will bend away from the normal.

 Snell’s Law can be rewritten in the form

where nti ≡ nt/ni is the relative index 
of refraction of the two media. Note 
that nti = 𝑣𝑣𝑖𝑖/𝑣𝑣𝑡𝑡; moreover, nti = 1/nit. 

Example 4.2  A narrow laserbeam traveling in 
water having an index of 1.33 impinges at 40.0°
with respect to the normal on a water–glass 
interface. If the glass has an index of 1.65 
(a) determine the relative index of refraction. 
(b) What is the beam’s transmission angle in 

the glass

Fig. 4.23 The bending of rays at an interface. 
(a) When a beam of light enters a more 
optically dense medium, one with a greater 
index of refraction (ni < nt), it bends toward the 
perpendicular. 
(b) When a beam goes from a more dense to a 
less dense medium (ni > nt), it bends away 
from the perpendicular.
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Total Internal Reflection
 Let’s now take a closer look at the case of internal reflection (ni > nt).
 We allow 𝜃𝜃𝑖𝑖 to increase gradually, as indicated in Fig. 4.59. 
 We know 𝜃𝜃𝑡𝑡>𝜃𝜃𝑖𝑖, because

Fig. 4.59 Internal reflection and the critical angle.

 When 𝜃𝜃𝑡𝑡 = 90°, sin 𝜃𝜃𝑡𝑡 = 1 and

where 𝜃𝜃𝑐𝑐 is called critical angle, which 
is the special value of 𝜃𝜃𝑖𝑖 when 𝜃𝜃𝑡𝑡 = 90°.

When 𝜃𝜃𝑖𝑖 greater than or equal to 𝜃𝜃𝑐𝑐, 
all the incoming energy is reflected 
back into the incident medium. The 
process is known as total internal 
reflection.
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 The critical angle for air–glass interface is roughly 42° (see Table 4.3).
 Consequently, a ray incident normally on the left face of either of the prisms in Fig. 

4.60 will have a 𝜃𝜃𝑖𝑖 > 42° and therefore be internally reflected. 
 This is a convenient way to reflect nearly 100% of the incident light.

Fig. 4.60 Total internal reflection.

45°



𝜃𝜃𝑖𝑖

Fig. 4.27 The bending of light as it 
enters and leaves two different 
transparent materials across a planar 
interface. Now imagine that S in (b) is 
underwater—rotate the diagram 90°
counterclockwise. An observer in the 
air would see S imaged at P.

 A luminous point S on the left sends out light, some of 
which arrives at the interface where it is refracted as 
shown in Fig. 4.27

 Consider a narrow cone the rays will refract only a little, 
being nearly normal to the interface, and then will 
indeed appear to come from a single point P. 

 The locations S and P are said to be conjugate points.
 Using triangles SAO and PAO in Fig. 4.27b

𝑠𝑠𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡𝜃𝜃𝑖𝑖 = 𝑠𝑠𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝜃𝜃𝑡𝑡
 Because the ray cone is narrow, 𝜃𝜃𝑖𝑖 and 𝜃𝜃𝑡𝑡 are small 

and we can replace the tangents with sines, so Snell’s 
Law yields 

Refraction of Light from a Point Source

 Example: Look straight down (i.e., to the left in Fig. 
4.27b) on a fish (where nt = 1, ni = 4/3, and nt/ni = 3/4), 
which is 4.0 m beneath the surface and it will appear 
to be only 3.0 m below. 9



Fig. 4.29 Seeing an object beneath 
the surface of a quantity of water.

Rays from the submerged 
portion of the pencil bend on 
leaving the water as they rise 
toward the viewer. (E.H.)
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Example 4.3  A ray impinges on a block of glass of index 1.55, as shown in the 
following illustration. Determine the angles 𝜃𝜃1, 𝜃𝜃2, 𝜃𝜃3, 𝜃𝜃4, 𝜃𝜃5, 𝜃𝜃6, 𝜃𝜃7, and 𝜃𝜃8.
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Fermat’s Principle
 Fermat’s Principle: light, in going from point S to P, traverses the route having the 

smallest optical path length (OPL).
 OPL = nl, where l is the spatial length and n is the index of refraction of the material.

Fig. 4.35 Minimum path from the source 
S to the observer’s eye at P.

 Fig. 4.35 depicts a point source S emitting a 
number of rays that are then “reflected” toward P.

 If we draw the rays as if they emitted from S′ (the 
image of S), none of the distances to P will have 
been altered (i.e., SAP = S′AP, SBP = S′BP, etc.). 

 But obviously the straight-line path S′BP, which 
corresponds to 𝜃𝜃𝑖𝑖 = 𝜃𝜃𝑟𝑟, is the shortest possible 
one. 

 The same kind of reasoning (Problem 4.35) 
makes it evident that points S, B, and P must lie 
in what has previously been defined as the 
plane-of-incidence.
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Fig. 4.36 Fermat’s Principle applied 
to refraction.

 Fig. 4.36 depicts the application of Fermat’s Principle to the case of refraction.
 We minimize t, the transit time from S to P, with respect to the variable x. 
 The smallest transit time will then presumably coincide with the actual path. Hence

 To minimize t(x) with respect to variations in x, we set 
dt/dx = 0, that is,

 Using the diagram, we can rewrite the expression as

which is no less than Snell’s Law (Eq. 4.4). If a beam 
of light is to advance from S to P in the least possible 
time, it must comply with the Law of Refraction.



The Electromagnetic Approach
Waves at an Interface

or

Suppose that the incident monochromatic lightwave is planar, so that it has the form

where the surfaces of constant phase are those for which 𝒌𝒌𝒊𝒊 � 𝒓𝒓 = constant.

Assume that 𝑬𝑬0𝑖𝑖 is constant in time, we can write the reflected and transmitted waves 
as

Here 𝜀𝜀𝑟𝑟 and 𝜀𝜀𝑡𝑡 are phase constants relative to 𝑬𝑬𝑖𝑖 and are introduced because the 
position of the origin is not unique.
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The Fresnel Equations
 We now evaluate the interdependence shared by the amplitudes 𝑬𝑬0𝑖𝑖, 𝑬𝑬0𝑟𝑟, and 𝑬𝑬0𝑡𝑡.
 suppose that a plane monochromatic wave is incident on the planar surface 

separating two isotropic media. 
 We shall resolve its 𝑬𝑬- and 𝑩𝑩-fields into components parallel and perpendicular to the 

plane-of-incidence and treat these constituents separately.
Case 1: 𝑬𝑬 perpendicular to the plane-of-incidence and 𝑩𝑩 is parallel to it (Fig. 4.47). 

Fig. 4.47 An incoming wave whose 𝑬𝑬 -field is normal to the plane-of-
incidence. The fields shown are those at the interface; they have been 
displaced so the vectors could be drawn without confusion. 15



 Recall that 𝐸𝐸 = 𝑣𝑣𝑣𝑣, so that

 Making use of the continuity of the tangential components of the 𝑬𝑬-field, we have at 
the boundary at any time and any point

 Another boundary condition is the continuity of the tangential component of 𝑩𝑩/𝜇𝜇 that 
requires
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 The laws of Electromagnetic Theory lead to certain requirements that must be met by 
the fields, and they are referred to as the boundary conditions. 

 One of these is that the component of the electric field 𝑬𝑬 that is tangent to the 
interface must be continuous across it.



 Since 𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑟𝑟 and 𝜃𝜃𝑖𝑖 = 𝜃𝜃𝑟𝑟, Eq. (4.26) can be written as

 From Eq. (4.23) we have

 Making use of Eqs. (4.12), (4.13), and (4.14) and remembering that the cosines 
equal one another at y = 0, we obtain

 Combined with Eq. (4.25), this yields

and



 The ⊥ subscript means the case that 𝑬𝑬 is perpendicular to the plane-of-incidence.
 These two expressions, which are completely general statements applying to any 

linear, isotropic, homogeneous media, are two of the Fresnel Equations.
 Most often one deals with dielectrics for which 𝜇𝜇𝑖𝑖 ≈ 𝜇𝜇𝑡𝑡 ≈ 𝜇𝜇0; consequently, the 

common form of these equations is simply

 Here 𝑟𝑟⊥ denotes the amplitude reflection coefficient, and 𝑡𝑡⊥ is the amplitude 
transmission coefficient.
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Case 2: 𝑬𝑬 parallel to the plane-of-incidence.

Fig. 4.48 An incoming wave whose 𝑬𝑬-
field is in the plane-of-incidence.

 A similar pair of equations can be derived when 
the incoming 𝑬𝑬-field lies in the plane-of-incidence 
as shown in Fig. 4.48. 

 Continuity of the tangential components of 𝑬𝑬 on 
either side of the boundary leads to

 In much the same way as before continuity of 
the tangential components of �𝑩𝑩 𝜇𝜇 yields

 Using the fact that 𝜇𝜇𝑖𝑖 = 𝜇𝜇𝑟𝑟 and 𝜃𝜃𝑖𝑖 = 𝜃𝜃𝑟𝑟, we can 
combine these formulas to obtain two more of 
the Fresnel Equations (next slide):
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 One further notational simplification can be made using Snell’s Law, at which the 
Fresnel Equations for dielectric media become (Problem 4.43)

Note: all possible sign variations have been labeled the Fresnel Equations. They must 
be related to the specific field directions from which they were derived.
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Example 4.4  An electromagnetic wave having an amplitude of 1.0 V/m arrives at an 
angle of 30.0° to the normal in air on a glass plate of index 1.60. The wave’s electric 
field is entirely perpendicular to the plane-of-incidence. Determine the amplitude of the 
reflected wave.
Solution

But first we’ll need 𝜃𝜃𝑡𝑡, and so from Snell’s Law

Hence

and so
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Interpretation of the Fresnel Equations
 This section examines the physical implications of the Fresnel Equations. 

o Determining the fractional amplitudes and flux densities that are reflected and 
refracted. 

o Determining the phase shifts that might be incurred in the process
Amplitude Coefficients
 At nearly normal incidence (𝜃𝜃𝑖𝑖 ≈ 0), from Eqs. (4.34) and (4.40), we have

 In the limit, as 𝜃𝜃𝑖𝑖 goes to 0, cos 𝜃𝜃𝑖𝑖 and cos 𝜃𝜃𝑡𝑡 both approach 1, and consequently

Thus, for example, at an air (ni = 1)–glass (nt = 1.5) interface at nearly normal 
incidence, the amplitude reflection coefficients equal ±0.2.
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Fig. 4.49 The amplitude coefficients of reflection and 
transmission as a function of incident angle. These 
correspond to external reflection nt > ni at an air–glass 
interface (nti = 1.5).

Polarization
angle

Fig. 4.50 The amplitude coefficients of reflection 
as a function of incident angle. These correspond 
to internal reflection nt < ni at an air-glass interface 
(nti = 1/1.5).

Critical
angle

Polarization
angle

(𝜃𝜃i + 𝜃𝜃t) = 90°
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Phase Shifts

 Thus, at the boundary 𝑬𝑬𝑖𝑖 ⊥ and 𝑬𝑬𝑟𝑟 ⊥ are antiparallel and therefore 𝜋𝜋 out-of-phase 
with each other, as indicated by the negative value of 𝑟𝑟⊥.

 Similarly, 𝑡𝑡⊥ and 𝑡𝑡∥ are always positive and the phase shift introduced ∆𝜑𝜑 = 0.
 Furthermore, when ni > nt no phase shift in the normal component (𝑟𝑟⊥) results on 

reflection, that is, ∆𝜑𝜑⊥= 0 as long as 𝜃𝜃i < 𝜃𝜃c.
 When deal with 𝑬𝑬𝑖𝑖 ∥, 𝑬𝑬𝑟𝑟 ∥, and 𝑬𝑬𝑡𝑡 ∥, it’s necessary to define more explicitly what is 

meant by in-phase, since the field vectors are coplanar but generally not colinear.
 We define that two fields in the incident plane are in-phase if their y-components

are parallel, and are out-of-phase if the components are antiparallel.
 With this definition we need only look at the vectors normal to the plane-of-

incidence, whether they be 𝑬𝑬 or 𝑩𝑩, to determine the relative phase of the 
accompanying fields in the incident plane.

 When two 𝑬𝑬-fields are out-of-phase so too are their associated 𝑩𝑩-fields and vice versa.

The sign of 𝑟𝑟⊥ is associated with the relative directions of 𝑬𝑬0𝑖𝑖 ⊥ and 𝑬𝑬0𝑟𝑟 ⊥.

 From Eq. (4.42)                           that 𝑟𝑟⊥is negative regardless of 𝜃𝜃i when nt > ni.
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Fig. 4.51 Field orientations and phase shifts.

 As an example, in Fig. 4.51a 𝐄𝐄i and 𝐄𝐄t are in-phase, as are 𝐁𝐁i and 𝐁𝐁t, whereas 𝐄𝐄i
and 𝐄𝐄r are out-of-phase, along 𝐁𝐁i and 𝐁𝐁r. 

 Similarly in Fig. 4.51b 𝐄𝐄i, 𝐄𝐄r, and 𝐄𝐄t are in-phase, as are 𝐁𝐁i, 𝐁𝐁r, and 𝐁𝐁t.

which is positive (△𝜑𝜑∥ = 0) as long as

that is, if

or equivalently

 This will be the case for ni < nt if

and for ni > nt when

 Now, the amplitude reflection coefficient for 
the parallel component is given by

 Figure 4.52 (next slide) summarizes these conclusions.
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Fig. 4.52 Phase shifts for the parallel and perpendicular components of the 𝑬𝑬-field 
corresponding to internal and external reflection.

External reflection Internal reflection
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Reflectance and Transmittance
 Consider a circular beam of light incident on a surface, 

as shown in Fig. 4.55, such that there is an illuminated 
spot of area A. 

 Recall that the power per unit area crossing a surface in 
vacuum whose normal is parallel to 𝑺𝑺, the Poynting 
vector, is given by

 Furthermore, the radiant flux density (W/m2) or irradiance is

Fig. 4.55 Reflection and 
transmission of an 
incident beam.

This is the average energy per unit time crossing a unit 
area normal to 𝑺𝑺 (in isotropic media 𝑺𝑺 is parallel to 𝒌𝒌).

 let Ii, Ir, and It be the incident, reflected, and transmitted 
flux densities, respectively. 

 The cross-sectional areas of the incident, reflected, and 
transmitted beams are, respectively, A cos 𝜃𝜃𝑖𝑖, A cos 𝜃𝜃𝑟𝑟, and 
A cos 𝜃𝜃𝑡𝑡.
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 Accordingly, the incident power is IiA cos 𝜃𝜃𝑖𝑖; this is the energy per unit time flowing in 
the incident beam, and it’s therefore the power arriving on the surface over A.

 Similarly, IrA cos 𝜃𝜃𝑟𝑟 is the power in the reflected beam, and ItA cos 𝜃𝜃𝑡𝑡 is the power 
being transmitted through A. 

 We define the reflectance R to be the ratio of the reflected power (or flux) to the 
incident power

 In the same way, the transmittance T is defined as the ratio of the transmitted to the 
incident flux and is given by

 The quotient Ir/Ii equals �𝑣𝑣𝑟𝑟𝜖𝜖𝑟𝑟𝐸𝐸0𝑟𝑟2 /2 𝑣𝑣𝑖𝑖𝜖𝜖𝑖𝑖𝐸𝐸0𝑖𝑖2 /2 , and since the incident and 
reflected waves are in the same medium, 𝑣𝑣𝑟𝑟 = 𝑣𝑣𝑖𝑖 , 𝜖𝜖𝑟𝑟 = 𝜖𝜖𝑖𝑖, and
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 In like fashion (assuming 𝜇𝜇𝑖𝑖 = 𝜇𝜇𝑡𝑡 = 𝜇𝜇0),

where 𝜇𝜇0𝜖𝜖𝑡𝑡 = ⁄1 𝑣𝑣𝑡𝑡2 𝑡𝑡𝑡𝑡𝑎𝑎 𝜇𝜇0𝑣𝑣𝑡𝑡𝜖𝜖𝑡𝑡 = ⁄𝑡𝑡𝑡𝑡 𝑐𝑐 was used. 

 Observe that in Eq. (4.57) T is not simply equal to t2, for two reasons. 
o First, the ratio of the indices of refraction must be there, since the speeds at which 

energy is transported into and out of the interface are different,
o Second, the cross-sectional areas of the incident and refracted beams are 

different. The energy flow per unit area is affected accordingly, and that manifests 
itself in the presence of the ratio of the cosine terms.

 Based on the conservation of energy for the configuration depicted in Fig. 4.55, the 
total energy flowing into area A per unit time must equal the energy flowing outward 
from it per unit time:
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 When both sides are multiplied by c, this expression 
becomes

Fig. 4.55 Reflection and 
transmission of an incident beam.

this is simply R + T = 1 (4.60)
where there was no absorption.

 For ordinary “unpolarized” light, half oscillates parallel to 
the incident plane and half oscillates perpendicular to it. 
It follows from Eqs. (4.56) and (4.57) that

+nt
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Fig. 4.56 Reflectance and 
transmittance versus incident angle.

which are illustrated in Fig. 4.56. 
 Furthermore, it can be shown (Problem 4.73) that

Note: 𝑅𝑅⊥is the fraction of 𝐼𝐼𝑖𝑖⊥ that is reflected, and not 
the fraction of Ii reflected. Accordingly, both 𝑅𝑅⊥ and 𝑅𝑅∥
can equal 1, and so the total reflectance for natural 
light is given by

For a rigorous proof of this equation see Section 8.6.1.
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Example 4.5  Light impinges on a slab of glass in air at the polarization angle 𝜃𝜃𝑝𝑝. 
Assume that the net transmittance is known to be 0.86, and the incoming light is 
unpolarized. (a) Determine the percent of the incident power that is reflected. (b) If 
1000 W comes in, how much power is transmitted with its E-field perpendicular to the 
plane-of-incidence?
Solution 
(a) We are given that T = 0.86 and that since the beam is unpolarized half the light is 
perpendicular to the plane of incidence and half is parallel to it. For unpolarized light

 Here 𝜃𝜃𝑖𝑖 = 𝜃𝜃𝑝𝑝 and so from Fig. 4.56 𝑇𝑇∥ = 1.0; all the light whose electric field is parallel 
to the plane of incidence is transmitted. Hence

and for the perpendicular light

Since

and the net reflected fraction is
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(b) Given 1000 W incoming, half of that, or 500 W, is perpendicular to the incident 
plane. Of this 72% is transmitted, since 𝑇𝑇⊥ = 0.72. Hence the power transmitted with its 
E-field perpendicular to the plane-of-incidence is

0.72 x 500 W = 360 W
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 When 𝜃𝜃𝑖𝑖 = 0, the incident plane becomes undefined, and any distinction between the 
parallel and perpendicular components of R and T vanishes.

 In this case Eqs. (4.61) through (4.64), along with (4.47) and (4.48), lead to

Thus 4% of the light incident normally on an air–glass (ng = 1.5) interface will be 
reflected back, whether internally, ni > nt, or externally, ni < nt (Problem 4.70).

 This will be of concern to anyone who is working with a complicated lens system, 
which might have 10 or 20 such air–glass boundaries.

 Figure 4.57 is a plot of the reflectance at a single interface, assuming normal 
incidence for various transmitting media in air. 

 Figure 4.58 depicts the corresponding dependence of the transmittance at normal 
incidence on the number of interfaces and the index of the medium.

 This is why you can’t see through a roll of “clear” smooth-surfaced plastic tape, and 
it’s also why the many elements in a periscope must be coated with antireflection 
films (Section 9.9.2).
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Fig. 4.57 Reflectance at normal incidence 
in air (ni = 1.0) at a single interface.

Fig. 4.58 Transmittance through a number of 
surfaces in air (ni = 1.0) at normal incidence.
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Example 4.6  Consider a beam of unpolarized light in air arriving at the flat surface of a 
glass sheet (n = 1.50) at the polarization angle 𝜃𝜃𝑝𝑝. Considering Fig. 4.49 and the E-field 
oscillating parallel to the incident plane, determine 𝑅𝑅∥ and then show by direct 
computation that 𝑇𝑇∥ = 1.0. Since 𝑟𝑟∥ = 0, why is 𝑡𝑡∥ ≠ 1?
Solution
From Eq. (4.62)
hence
and no light is reflected. On the other hand, from Eq. (4.64)

Using Fig. 4.49 and Eq. 4.41 𝑡𝑡∥ = 0.667 at 𝜃𝜃𝑖𝑖 = 𝜃𝜃𝑝𝑝 = 56.3°, 

 All the light is transmitted. Conservation of energy in a lossless medium tells us that 
𝑅𝑅∥ + 𝑇𝑇∥ = 1; it does not say that 𝑟𝑟∥+ 𝑡𝑡∥ = 1.

and since 𝜃𝜃𝑖𝑖 + 𝜃𝜃𝑡𝑡 = 90.0°, 
𝜃𝜃𝑡𝑡 = 33.7°, consequently Fig. 4.49 

(𝜃𝜃i + 𝜃𝜃t) = 90°
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